µSR 2011, Cancun

BNMR Search for Magnetic Phase Separation in GaAs:Mn

W.A. MacFarlane

Chemistry Department University of British Columbia, Vancouver

⁸Li beta NMR differences

- Lifetime $\tau = 1.21$ seconds (~1,000,000× μ^+)
- S = 2, Q = +31.4 mb
- beta Energy ~ 6 MeV
- Low energy (< 30 keV) no "muon counter"
- ~2 weeks of beam per year \otimes

Mn doped GaAs, a magnetic semiconductor

Mn acceptor (STM) Yakunin et al. PRL **92**, 216806 (04)

Substitutional (Ga): Acceptor Interstitial: Double Donor

 $Ga_{1-x}Mn_xAs$ is not stable in bulk

Ga_{1-x}Mn_xAs a dilute magnetic semiconductor

Dilute Magnetic Semiconductors

Mn doped GaAs

180 nm thick 5.4% Mn, Tc ~ 72 K \ An alloy, metallic

less impedance mismatch than with a metallic ferromagnet like Fe

Sample: J.K. Furdyna, Notre Dame

⁸Li resonance in 180 nm Ga_{0.95}Mn_{0.05}As / GaAs

Sharp Substrate Line

LEµSR evidence of phase separation

Storchak et al., PRL 101, 027202 (08)

<u>βNMResonance</u>

<u>βNMResonance</u>

⁸Li Resonances in Bare GaAs

Depth Dependence at 50 K (< T_C) Q. Song et al., Physica B (2009)

broad, negatively shifted line, fast spin relaxation associated with the Mn doped layer

Temperature Dependence

Pulsed rf resonances

Q. Song et al., submitted to PRB

Summary of the T dependence

Q. Song et al., submitted to PRB

CW resonances at 28 keV

⁸Li in GaAs substrate

Temperature dependence of T_1

Q. Song et al., submitted to PRB

CW resonances at 8 keV: ⁸Li in the GaAs:Mn

LEmuSR: nonrelaxing Signal is Background

Dunsiger et al., Nature Materials 9, 299 (10)

Pulsed Spectra Freq. Integrated Amplitudes

T₁ Scaled Amplitudes

Summary

- BNMR surprise: a signal in a disordered magnet!
- Volume fractions not as direct as µSR but estimates possible
- No evidence for magnetic phase separation in this GaMn_{0.054}As
- Spin injection: from Fe? from CP light?

bnmr.triumf.ca

Acknowledgments

R.F. Kiefl, T. Keeler, M.D. Hossain, W. Dong, H. Saadaoui,
Q. Song (UBC Physics), T.J. Parolin, (UBC Chemistry),
Z. Salman*, G.D. Morris, R.I. Miller (TRIUMF),
K.H. Chow, I. Fan, A. Mansour (Alberta, Physics),
S.R. Dunsiger (TUMunich)

SAMPLES:

J.K. Furdyna, X. Liu (Notre Dame), K.M. Yu (Berkeley)

*now at PSI

At TRIUMF:

Polarizer: C.D.P. Levy, M. Pearson, A. Hatakeyama (Tokyo) RF: S.R. Kreitzman

Contributions to the Local Field

$B = B_0 + B_{demag} + B_{Lor} + B_{loc}$ $= B_0 - 4\pi M + (4\pi/3)M + B_{loc}$

SQUID Magnetization in 1.3 T

Clogston Jaccarino Analysis 100 B_{loc} (G) a) The local field 0 0 T_{c} b) (Ð) -10 ∀B raw resonance shift -20 10 σ_{Mn} (kHz) C) linewidth 5 0 5 10 15 20 0 Magnetization (emu/cm³)

Q. Song et al., submitted to PRB