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Abstract

The magnetic fields associated with a single superconduct-
ing vortex traversing a thin film are calculated. The formula-
tion of Pearl, which has been used for a geometry in which
for z<0 one has a vacuum and for z>0 one has supercon-
ducting material, is extended to the case of a thin film. In
the Pearl geometry the flux exiting the sample is less than
a flux quantum, while deep in the superconductor it is a flux
quantum. For the thin film, the flux even in the mid-plane, is
less than a flux quantum, but becomes equal to it for thick-
ness much greater than the penetration depth. The mag-
netic field near the surface in both geometries has a sig-
nificant radial component. The fields for a vortex array are
then obtained by summing the fields from nearby vortices.
The measurability of the field distributions is discussed.

1. Introduction

WITH the possibility of using the muon spin rotation tech-
nique (µSR) for thin films it has become possible to

study superconducting films with thickness comparable to
the superconducting penetration depth (λ). Niedermayer
et al.[1] have already used µSR to study the internal fields
near the surface of a superconductor, but one for which the
overall thickness was considerably larger than λ. Here we
present a calculation of the fields produced by vortices in
films for which the total superconducting material thickness
is comparable to λ.

2. The Calculation

WHILE we could have obtained the internal fields by
summing appropriate pancake vortices, see Clem[2],

we have followed J. Pearl in his treatment of a metal-air
interface[3]. While he had a surface separating infinite
metal and infinite air regions, we consider a thin film be-
tween two infinite air regions. Pearl used Ginzberg-Landau
electrodynamics for the superconductor so the vector po-
tential satisfies:

∇×∇×A + (1/λ)A =
φ0θ̂

2πλ2r
(1)

We are first interested in the field distribution of a vortex
throughout a film of thickness comparable to the penetra-
tion depth. The primary differences between our calcula-
tion and that of Pearl are that we have two boundaries and
that we require symmetry about the thin film’s mid-plane.
The boundary conditions are that the vector potential and
its derivative are continuous across the boundary.

THE functional form for the vector potential in Pearl’s ge-
ometry, for which the material for z > 0 is supercon-

ducting and for z < 0 is vacuum, inside the superconductor
is:

f2 =

∫ ∞
0

φ0
2πλ2

J1(γr)

γ2 + 1/λ2
·

·

(
1− γ exp(−(γ2 + 1/λ2)1/2z)

γ + (γ2 + 1/λ2)1/2

)
dγ (2)

Where J1(γr) is a Bessel function. If we introduce s =

(γ2 + 1/λ2)1/2 this can be written as:

f2 =

∫ ∞
0

φ0
2πλ2

J1(γr)

s2

(
1− γ exp(−sz)

γ + s

)
dγ (3)

Outside the superconductor, z < 0, the solution is:

f1 =

∫ ∞
0

φ0
2πλ2

J1(γr)

s2
eγz

s

s + γ
dγ (4)

The function f1 is the solution of:
∂2f1
∂z2

+
∂

∂r

1

r

∂

∂r
rf1 = 0 (5)

The function f2 is the solution of:
∂2f2
∂z2

+
∂

∂r

1

r

∂

∂r
rf2 −

1

λ2
f2 = −

φ0
2πλ2r

(6)

For a thin film of thickness d, the solution inside the super-
conductor is:

f2 =

∫ ∞
0

φ0
2πλ2

J1(γr)

s2
·(

1− γ[exp(−s(z + d/2) + exp(+s(z − d/2)))]
s(1− e−sd) + γ(1 + e−sd)

)
dγ (7)

The solution outside the superconductor and for z > d/2 is:

f1 =

∫ ∞
0

φ0
2πλ2

J1(γr)

s2
(1− e−sd)eγ(z+d/2)s

s(1− e−sd) + (1 + e−sd)γ
dγ (8)

for z < −d/2. For z > d/2 the exponential is e−γ(z−d/2).

3. Results

The general shape of the fields may be seen in Fig. 1.
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Figure 1: Typical field lines for a thin film of 100 nm and
λ=130 nm. One can see the radial component increasing
as one is further from the vortex core and nearer the sur-
face.

The radial dependence of the field perpendicular compo-
nent of the magnetic field near the film’s surface is shown
in Fig. 2. The radial dependence of the radial field compo-
nent near the film’s surface is shown in Fig. 3
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Figure 2: The perpendicular component of the magnetic
field for a single vortex as a function of radius from its core.
This is for near the surface of the superconductor of thick-
ness 100 nm and penetration depth 130 nm.
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Figure 3: The radial component of the magnetic field for a
single vortex as a function of radius from its core. This is
for near the surface of the superconductor of thickness 100
nm and penetration depth 130 nm.

PERHAPS the most surprising result is shown in Fig.
4. In this figure the flux for one vortex is shown

as a function of film thickness, d, for various penetration
depths. This flux is calculated in the mid-plane of the film
where the magnetic fields are only in the z direction. All
of these curves approach the flux quantum φ0 for large
thickness. However, in the regime where d is compa-
rable to λ a considerable reduction in the flux occurs.
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Figure 4: The total magnetic flux in the mid-plane of the
film as a function of film thickness, d, for various penetra-
tion depths, λ. All the curves approach φ0 for thick films.

WE have also calculated the field distribution for a tri-
angular array of vortices by summing the fields from

individual vortices. We then used this field distribution to
simulate µSR data. These are shown in Figs. 5 and 6.
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Figure 5: Simulated µSR data for the initial muon polar-
ization transverse to the magnetic field which would be
perpendicular to the film. The results for two regions are
shown, black: muons stopping near the surface of the film
and red: stoping near the center.
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Figure 6: Simulated µSR data for the initial muon polariza-
tion parallel to the magnetic field, which is perpendicular to
the film. The polarization is measured along this initial po-
larization direction. Again black: is for muons stopping near
the surface, and red: for muons in the mid-plane.

4. Conclusion

IT will be difficult to directly observe the effects of the trans-
verse fields even for the case where the initial polarization

is perpendicular to the film. In Fig. 6 the polarization is very
small even for the slice at the edge. The dc offset or the
appearance of oscillations could easily occur for slight mis-
alignments of the sample, detectors, muon beam position,
or muon polarization direction.

THE reduction of the flux per vortex, however, should have
interesting consequences. Since the penetration depth,

λ, is a function of temperature and the flux per vortex de-
pends on λ, the vortex density must depend on temper-
ature. This in turn will produce changes in the rms field
variation over and above that produced just by the variation
λ for fixed vortex density. Further, if the vortices become
pinned at some temperature, then there will be an internal
field change for temperatures below that pinning tempera-
ture. Studying the consequences of the reduction of the flux
per vortex should be interesting.
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